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ABSTRACT 

It is proved that  there is no Sidon set selected from {1 ,2 , . . .  ,N}  whose 

sum set contains Cl N1/2 consecutive integers, but  it may contain c2 N1/3 

consecutive integers. Moreover, it is shown that  a finite Sidon set cannot 

be well-covered by generalized arithmetic progressions. 

1. The set of the real numbers, integers, resp. positive integers will be denoted 

by R, Z and N. ,4, B . . . .  will denote (finite or infinite) subsets of N, and their 

counting functions will be denoted by A ( N ) ,  B ( N ) , . . .  so that,  e.g., 

A ( n )  = I{a: a < n, a E `4}1. 

For g E N, B2[g] denotes the class of all (finite or infinite) sets `4 C N such that  

for every integer n, the equation 

(1.1) a + a' = n,  a < a',  a , a  I E `4 

has at most g solutions. The sets ,4 C N with `4 E B2[1] are called Sidon sets, 

i.e., ,4 is a Sidon set if the sums a + a ~ with a <_ a ~, a , a  ~ E ,4 are distinct. An 

excellent account of the theory of Sidon sets and B2[g] sets is given in [4] (see [1] 

for a more recent result). For A C N we write SA = {Sl, s2 , . . .  } = ` 4 + , 4  (where 

`4 + ,4 is the set of the integers that  can be represented in the form a + a ~ with 

a, a ~ E A). The counting function of $A will be denoted by S . 4 ( N ) .  
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For m, g l ,g2 , . . .  ,era • N, e, f l , f 2 , . . .  , fm  • ~" the set 

P = "P(e, f l ,  f 2 , . . .  , fm;~.l,~2,...  ,~.m) 

= ( n : n - ~ - C ~ - X l f l ~ - . . . ~ - X m f m , X i  • {1, . . .  ,ei} f o r / =  1 . . . . .  m} 

is called a generalized arithmetic progression of dimension m, and the quantity 

Q(P)  = e1~2"" em 

is called the size of P.  

cl, c2 , . . ,  will denote positive absolute constants. If f ( n )  = O(g(n)),  then we 

write f ( n )  << g(n). 

2. Clearly, for a finite set .4 C 1~ we have 

(2.1) 2[A] - I <_ IS-al <_ (IA2[) + [A[ 

where IS-a[ is equal to the upper bound if and only if `4 is a Sidon set. Freiman 

[3] studied the structure of the sum set $-a under the assumption that  

(2.2) IS-al <  1.41 

where a is fixed and [`4[ --* +c~. He showed that  it follows from this assumption 

that  A and thus also S-a must have a nice structure: .4 can be well-covered by a 

generalized arithmetic progression. Indeed, there exist numbers cl = cl (a),  c2 = 

c2(a) such that  (2.2) implies the existence of a generalized arithmetic progression 

P of dimension m <_ cl with .4 C P and Q(7 a) <_ c2[.4[. 

In Part  I [2] of this paper  we studied the other extreme case when [SA[ is 

close to the upper bound in (2.1), i.e., .4 is a Sidon set or "nearly" Sidon set. 

In particular, we estimated the number of integers n with n - 1 ~ S-a, n E S-a; 

moreover, we studied the size of the gaps between the consecutive elements of 

S-a (both for Sidon sets .4). 

In this paper, first we will continue the study of the structure of sum sets of 

Sidon sets by estimating the length of blocks of consecutive integers in $-a. In 

the second half of the paper  we will show that  a Sidon set has an "antistructure" 

in the Preiman sense (our results in Part  I point to the same direction), namely, 

it cannot be well-covered by generalized arithmetic progressions. 
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3. If A is a (finite or infinite) Sidon set and N C N, then let h(A, N) denote the 

greatest integer h such that  there is an integer m with m < N and m + 1 C SA, 

m + 2 C SA, . . .  , m  + h C SA. Moreover, for n C N write 

H(N) = maxh(A,  N) 

where the maximum is taken over all Sidon sets ,4 with A c {1, 2 , . . .  , N ) .  We 

will show that  

(3.1) N 1/3 ~ H(N) <~ N W2. 

(We remark that  the upper bound seems to be closer to the truth; unfortunately, 

we have not been able to improve on the lower bound.) 

First we will prove the upper bound in (3.1) in the following much sharper 

fo rm:  

THEOREM 1: Assume that  N E IN, L C N, and A c {1 ,2 , . . .  , N }  is a Sidon set. 

Then for all K C Z we have 

1 L (3.2) SA(K + L) - SA(K) < 2 + 7L1/aN1/4" 

Applying Theorem 1 with L = [200N1/2], we obtain 

COROLLARY 1: For N > No we have 

H(N) < 200N W2. 

We need the following fact: if A is a Sidon set, then we Proof  of  Theorem 1: 

have 

(3.3) A ( X + Y ) - A ( X ) < _ 2 Y  ~/2 for a l l X • R ,  Y E N .  

Indeed, if .4A ( X , X  + Y] = { a l , a 2 , . . . , a t } ,  then the (2) + t sums a, + aj with 

1 < i < j G t are distinct, and all these sums belong to the interval (2X, 2 X + 2 Y ]  

of length 2Y which implies (3.3). 

(3.2) is trivial for L G N 1/2, thus we may assume that  

(3.4) L > N 112. 

Let U = [LW2N1/4] + 1, and write I m =  [ m -  U + 1, m] and 
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for m -- 1, 2 , . . .  , N + U - 1. Here  we coun t  eve ry  a C -4 for e x a c t l y  U values  of 

m,  t hus  in v iew of (3.3) we have  

xm :- U[A I < 2 U N  1/2, 
N + U - 1  

(3.5) Z 

W e  wil l  coun t  t he  n u m b e r  T of t he  t r ip l e s  (a,  a ' ,  m )  w i t h  

(3.6) a,a '  E , 4 n l m ,  a < a'. 

If  we fix m,  t h e n  a p a i r  a,  a '  s a t i s fy ing  (3.6) can  be  se lec ted  in (x~)  ways .  T h u s  

by  (3.5) we have  

(x;) N+u-1 1 2 UNI /2 .  (3.7) T = ~ > ~ x ~ -  
m = l  m = l  

O n  the  o t h e r  h a n d ,  if we fix a pa i r  ( a , a ' )  w i th  0 < a '  - a < U in (3.6),  t h e n  

c lear ly ,  m in (3.6) m a y  a s s u m e  the  U - ( a '  - a)  va lues  m = a ' ,  a '  + 1 , . . . ,  a '  + 

(U  - ( a '  - a )  - 1). T h u s  we have  

(u  - ( a ' -  a)). 
a,a' EA 

Since  .4 is a S idon  set ,  t hus  

T = 

O<a ' -a<U 

a ~ -- a = i,  a,  a ~ E -4 

has  a t  m o s t  one s o l u t i o n  for al l  i. T h u s  we have  

U 2 U-1 (U - 1)U < _ _  
(3.8) T <  E (U - i) - 2 - 2 

i=1 

B y  (3.7) a n d  (3.8) we have  

N + U - 1  
2 < U  2 (3.9) E xm + 2UNU2" 

m~-i 

I t  fol lows t h a t  t h e r e  is a n  in t ege r  t w i t h  - U  < t _< 0 a n d  

2 < U + 2 N  1/2. (3.10/ Z xm 
m-- t  (mod U) 
I < m < N + U  
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For i = 1,2 . . . .  , [ ( N -  t + U -  1)/U], write 

and 

so tha t  by (3.10) we have 

Ai = A cl It+iu 

Yi = IA I = x t + i s  

[(N-t+U-1)/U] 
(3.11) E y2 < U + 2N 1/2. 

i = l  

Let M denote  the set of the pairs (a, a') with 

(3.12) a , a ' C . , 4 ,  K < a + a ' < K + L .  

Clearly, for each of these pairs a, a ~ there is a unique pair i, j with 

(3.13) a E.4~, a' E Aj 

(AI + A j ) N { K  + I , K  + 2, . . .  , K + L } # 0 .  

and 

(3.14) 

225 

(3 .16)  

[(N-t+U-1)/U] 
1 

imi  

LN1/2 
= L + (2U + 4N 1/2) + 2-------~-- < L + 10L1/2N 1/4. 

where i, j run over all pairs satisfying (3.14). Clearly, for fixed i, (3.14) may  hold 

for at most  [L/U] + 2 (consecutive) values of j ,  and similarly, for fixed j ,  i may  

assume as most  [L/U] + 2 distinct values. Thus in view of (3.4) and (3.11), we 

obtain from (3.15) tha t  

1 

i j i j 

For fixed i , j ,  the number  of pairs a,a s satisfying (3.13) is ylyj, thus the total  

number  of the pairs (a, a I) C M is 
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If s E S.a • (K, K + L], then either s has two representations in the form 

s = a + a '  with integers a, a '  satisfying (3.12) and a % a', or s is of the form 

s = 2a with a • M n (K/2, (K + L)/2] and then (3.12) holds with a '  = a. Thus 

in view of (3.3) and (3.16), we have 

SA(K + L) - SA(K) <_ ~(IMI + (A((K + L)/2)  - A(K/2))) 

( ) 1  1 L + IOL1/2N 1/4 -~- 2([L/2]  ~- 1) 1/2 < 2 -~- 7L1/2N1/4 

which completes the proof of Theorem 1. 1 

4. In this section, we will show that  

H(N) >> N 1/3. 

Indeed, we will prove this in the following sharper form: 

THEOREM 2: There is an infinite Sidon set .4 such that for n > no we have 

(4.1) h(M, n) > l n l / 3 .  
50 

Of course, this implies 

H(N) > ~--~N 1/3 for N > No. 

Proof of Theorem 2: We will define an infinite sequence of sets Bo, B1,. .  • with 
i lk--1 B - . ,  the following properties: writing Ak = w j = o  3 for k = 1, 2 , . .  we have 

Ak C { 1 , 2 , . . . , 8 k } ,  

tAkl <~ 2 k - l ,  

Ak is a Sidon set, 

and, for k >_ 5, 

1 . 2 k _  3 (4.2) 6 . 8 k - l + i E S . 4 ~ = A k + A k  for 1 _ < i _ < ~  . 

Indeed, let gk = {8 k + 1} for k = 0,1,2,3.  If B0, g l , . . .  , gk-1  (and thus also 

A1, A2 , . . .  , Ak) have been defined, then we define the set gk = {bl, b2, . . .  , b~} 

so that  

Bk C {8 k + 1,8 k + 2 , . . .  ,8k+1}, 

1 . 2k_ 1 
IBkl = 2u < 5 ' 

A k U B k  i s a S i d o n s e t  
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and 

6.8k+iE(AktOBk)+(AkUBk) for 1 < i < 1 . 2  k-2. 
- -  - -  3 

The  elements ba, b2 , . . .  , bu of Bk are defined recursively by using the greedy 

algorithm. In each step we define two further  b's. Assume tha t  

1 . 2k_ 2 1 (4.3) 0 _< j < 5 - 

( the case j = 0, i.e., the construct ion of bl, b2 is included), and b l , . . .  , b2j have 

been defined so that  

{bl,... ,b2j} C {8 k + 1 , . . .  ,8k+1}, 

.Ak U { b l  . . . .  , b 2 j }  is  a Sidon set (4.4) 

and 

(4.5) 6.8k+iC(.AkU{bl,...,b2j})u(AkU{bl,...,b2j}) for i = 1 , . . .  , j .  

1 ,)k--2 If (4.5) holds for all 1 < i < ~ ._ , then the construct ion terminates ,  i.e., we 

1 .2k -2  and (4.5) does take/3k = {bl . . . .  ,b2j}. If there is an i such tha t  1 < i < 

not hold, then we consider the smallest i, say io, with these properties.  Then  it 

suffices to show tha t  there is an 

(4.6) 

such tha t  writ ing 

(4.7) 

x • {1,2,... ,8 

b2j+l = 3 • 8 k - x ,  b2j+2 = 3 • 8 k + io + x ,  

these numbers  can be added to the set {bl,... , b2j}, i.e., 

(4.8) (Ak U { b l , . . .  , b2j}) U {b~j+l, b2j+2} is a Sidon set. 

((4.4) and (4.5), bo th  with j + 1 in place of j ,  follow trivially from (4.7) and 

(4.8).) Write Z)j = Ak U { b l , . . . ,  b2j} so that ,  by (4.3), we have 

1.2k_ 1 1.2k+l" (4.9) I:Djl _< [Akl + 2j  < 2 k-1 + 5 - 2 < 5 
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If an x satisfying (4.6) is "bad", i.e., (4.8) does not hold for this x, then there 

are dl, d2, d3 E T)j such that  

dl + d2 = d3 + b2j+l, dl  + d2 -- d3 + b2j+2 or  d l  + b2j+l  -- d2 + b2j+2 

holds (dx + d2 = b2j+l + b2j+2 is impossible by the definition of i0). Each of 

these equations eliminates at most IDj 13 "bad" x values, thus by (4.9), the total 

number of the "bad" x values is 

_< 3. (1  .2k+1)3 < 8k. 

Thus there is at least one "good" x satisfying (4.6) which completes the definition 

of Bk. 
+oo Finally, clearly .4 = Uk=1.4k is a set of the desired properties ((4.1) follows 

from (4.2)) and this completes the proof of Theorem 2. II 

5. In order to study coverings of sum sets of ("nearly") Sidon sets by generalized 

arithmetic progressions, first we have to introduce a measure of well-covering of 

this type. Such a measure was introduced by ErdSs about 30 years ago in the 

one-dimensional special case. For a finite set .4 C N and for m ¢ N, consider the 

coverings 

T 

(5.1) . 4C  U P s ,  d i m V ~ = m  ( f o r i = l , 2 , . . . , m )  
i=1 

of .4 by generalized arithmetic progressions of dimension m, and write 

T 

Dm(.4) = minT E Q(Pi) 
i=1 

where the minimum is taken over all coverings of the form (5.1) of .4. Clearly, 

for every finite .4 c N and all m E N we have 

1`41 ¢ D (A) << 1`41 =. 

For n E N, denote the set of the squares x 2 with x 2 _< n by A4n. 

conjectured that for e > 0, n > n0(E) we have 

Erd6s 

(5.2) DI(Mn) > n 1-~. 
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Sgrk5zy [7] proved this by showing that 

(5.3) D I ( M . )  >> - -  

S U M  S E T S  O F  S I D O N  S E T S  

(log n) 2" 
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D.~(A) < qI,AI. 

Here our goal is to show that in the other extreme case when .4 is a Sidon 

set or, more generally, B2[g] set, then A cannot be well-covered by generalized 

arithmetic progressions: 

THEOREM 3: I r A  C N, .4 is finite, g E N, m E N and 

(5.4) A C B2[g], 

then we have 

1 
(5.5) DIn(A) > a-aTv-~, I.al 2, z '-  , " ag 

Putt ing g = 1 here, we obtain 

COROLLARY 1 : I f . 4  is a finite Sidon set, then 

1 
D.~(A) > 2~-~lXl  2. 

Moreover, for e > 0, n > no(e), 1 < u < n the number of solutions of 

x 2 + y 2 = u ,  x, y C N  

i s  
log n 

<_ d(u) < exp((1 + ¢) log21oglogn) .  

Thus it follows from Theorem 3 that for n > no(e) we have 

[ • . l o g  n 
Dm (AJ,~) > 2 -  mn exp { -  (1 + ¢) log ) \ log log n 

(Note that probably we have D1 (.A/I~) >> n, however, (5.3) has not been improved 

yet.) 

Using the measure DIn(A) of well-covering, a consequence of Freiman's result 

cited in Section 2 can be formulated in the following way: for a > 0 there exist 

C 3 : C3(OL), C 4 = C4(O~ ) such that assuming (2.2), for some m < c3 we have 
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which, for m = 1, proves (5.2) but it is weaker than (5.3). 

Proo[ oE Theorem 3: Assume that 

T 

(5.6) ,, c U v~ 
i----1 

w h e r e  ~ i  = ~°(e(i)  , f } i ) ,  . . ,  ,arnf(i)',~l e(i) , ' - -  , f~)) a n d  w r i t e  

Ai=ANPi  (for i = 1,2, . . .  ,T). 

Consider all the pairs (a, a') with a, a' C Ai, a _< a'. The number of these pairs 

is 

I ~L +l.a~l> 2 ' 

and for each of these pairs (a, a') we have 

a+a' E P~ +P~ = 

7~ (2e(i)+ f~i)+...+ ¢(~) f~i),. ,ant'(O")P('),"~'l - 1, 2/~ ) - 1) J m  , . . . . .  ~ 

Thus denoting the number of solutions of (1.1) by r(n), we have 

IA~I = (5.7) E r(n) > I{(a, a'): a, a' C A,, a _< a'}l > - - ~  
nEPi+T)i 

On the other hand, it follows from (5.4) that 

(5.8) 

r(n) < Z g - gQ(V~ + ~'~) 
nE'Pl +'Pl nE'Pi + Pl 

m m 
= g H ( 2 / 5  i ) -  1 ) < g H  2950= 2mgO(Pi)" 

/=1  j = l  

By (5.7) and (5.8) we have 

T T 

(5 .9)  ~ I'A~I 2 < 2 r n + l g  E Q(~i )"  
i=1 i=1 

By Cauchy's inequality and (5.6), we have 

1 ( ~  )2 IAI 2 (5.1o) ~ I.Ad 2 ~ ~ IA~I ~ ~ - -  
i=1 i=1 
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It follows from (5.9) and (5.10) that 

T 

T E  Q(Pi) > 2-m-lg-~lAI2 
i = 1  

which proves (5.5). | 

6. In this section we will show that Theorem 3 is nearly sharp: 

THEOREM 4: For ali g, m, q C N there exist finite sets ,4 C N such that 

(6.1) I.AI = 2gq, 

(6.2) 

and 

(6.3) 

Proob 

(6.4) 

A c B2191 

DIn(A) <_ ~IAI 2. 
Let g = {e l , e2 , . . .  ,eq} be a Sidon set with IEI = q and 

le~ + e j  - e~ - e.I > (4g) q+2 for all i < u _< v < j. 

(Such a Sidon set g can be obtained by taking a Sidon set of cardinality q, and 

then multiplying each element of it by 2. (4g)q+2.) Then for i = 1, 2 , . . . ,  q, let 

Pi denote the m-dimensional generalized arithmetic progression 

so that 

and let 

(6.5) 

~ = ~ ( e ~  - (49)  ~ - ( m  - 1), (49)  ~, 1 , . . . ,  1; 2 9 , 1 , . . . ,  1) 

q 

A =  U P s .  
i----1 

Then (6.1) holds trivially. Moreover, the union on the right hand side of (6.5) 

is a covering of A of the form (5.1) by m-dimensional arithmetic progressions, 

thus by (6.1) we have 

q 

DIn(A) <_ qEQ(Pi )  = qlA] = ~g]A] 2 
i = 1  
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which proves (6.3). 

I t  remains  to show tha t  (6.2) also holds. Assume tha t  

(6.6) a l  -{- a2 = a3 + a4 

and al,a2,a3, a4 E A so tha t  

(6.7) a l  E 7)w, a2 C 7)x, a3 E 7)y, a4 E 7)z, w < x, y _< z 

can be assumed.  Then  it follows f rom (6.6) and the construct ion of .4 tha t  

lew + ex - - < 4(2  - 1 ) ( 4 g ) q  < ( 4 9 )  q + :  

By (6.4) and (6.7), this implies tha t  

(6.8) w = y ,  x = z .  

Since the representa t ion  of a posit ive integer in the number  sys tem of base 4g 

is unique, thus by (6.6), (6.7) and (6.8), it follows f rom the const ruct ion tha t  if 

a l  ~ a3, a l  ~ a4 in (6.6), then  we have w = y = z = x. Thus  denot ing the 

number  of solutions of (1.1) again by r(n), r(n) > 1 implies tha t  n is of the form 

(6.9) ( e x + u ' ( 4 g )  x ) + ( e ~ + v . ( 4 g )  ~ ) = n ,  O < u < v < Z g - 1 ,  

and r(n) is equal  to the number  of pairs (u ,v)  satisfying (6.9). Clearly, the 

number  of these pairs is < g which proves (6.2). | 

7. There  is a gap between the lower and upper  bounds  given in Theorems  3 and 

4 which becomes greater  as the dimension m increases. In order to t ighten this 

gap, one would need a possibly sharp  es t imate  for the cardinal i ty  of a max ima l  

B2[g] set selected f rom a given generalized a r i thmet ic  progression of dimension 

m. The  first difficulty is here tha t  much less is known on B2[g] sets, t han  on Sidon 

sets. There  is an even more  serious difficulty: even in the special case g = 1, 

i.e., in case of Sidon sets, only very weak es t imates  are known for m -+ + ~  (cf. 

[5,6]). Correspondingly,  the following question cannot  be answered at  present: 

Is it t rue  tha t  for all c > 0 there is a Q0 = Q0(~) such tha t  if 7 ) is a generalized 

a r i thmet ic  progression with Q(7 :)) > Q0, and A is a Sidon set with `4 C 7), then  

[`4[ < (Q(7)))(1/2)+E? 
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Moreover,  we r emark  t ha t  a l though in the most  impor t an t  special case g = 

m = 1 our es t imates  are quite satisfactory,  even in this special case there are 

problems t h a t  we have not been able to settle. In par t icular ,  we could not  answer 

the following question: Is it t rue  tha t  if .4 C {1, 2 , . . .  , N}  is a Sidon set with 

1.41 >> N1/2, then .4 cannot  be covered by << N 1/4 (one dimensional)  a r i thmet ic  

progressions of length [NU2]? 

We would like to t hank  the referee of this paper  for the r emark  tha t  this is 

not t rue for B212] sets instead of Sidon sets. Indeed, let B = {bl, b 2 , . . . ,  bt} be a 

max ima l  Sidon set selected f rom {1, 2 , . . .  [½ N 1/2] - 1 } so tha t  t > N 1/4 and let .4 

denote  the set of the integers of the form bi + bj IN1/2], 1 _< i, j < t. Then  clearly, 

.4 C {1, 2 , . . . ,  N},  .4 2>> N 1/2, .4 is a B212] set and .4 can be covered by the 

t = O ( N  U4) ar i thmet ic  progressions {bi + [N1/2], bi + 2 [ N U 2 ] , . . . ,  bi + [N1/212}, 

i = 1 , 2 , . . .  , t  of length [N1/2]. 
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